Adapting a Polarity Lexicon using Integer Linear Programming for Domain-Specific Sentiment Classification
نویسندگان
چکیده
Polarity lexicons have been a valuable resource for sentiment analysis and opinion mining. There are a number of such lexical resources available, but it is often suboptimal to use them as is, because general purpose lexical resources do not reflect domain-specific lexical usage. In this paper, we propose a novel method based on integer linear programming that can adapt an existing lexicon into a new one to reflect the characteristics of the data more directly. In particular, our method collectively considers the relations among words and opinion expressions to derive the most likely polarity of each lexical item (positive, neutral, negative, or negator) for the given domain. Experimental results show that our lexicon adaptation technique improves the performance of fine-grained polarity classification.
منابع مشابه
Towards Debugging Sentiment Lexicons
Central to many sentiment analysis tasks are sentiment lexicons (SLs). SLs exhibit polarity inconsistencies. Previous work studied the problem of checking the consistency of an SL for the case when the entries have categorical labels (positive, negative or neutral) and showed that it is NPhard. In this paper, we address the more general problem, in which polarity tags take the form of a continu...
متن کاملBuilding a robust sentiment lexicon with (almost) no resource
Creating sentiment polarity lexicons is labor intensive. Automatically translating them from resourceful languages requires in-domain machine translation systems, which rely on large quantities of bi-texts. In this paper, we propose to replace machine translation by transferring words from the lexicon through word embeddings aligned across languages with a simple linear transform. The approach ...
متن کامل[LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter
This paper presents the contribution of our team at task 2 of SemEval 2013: Sentiment Analysis in Twitter. We submitted a constrained run for each of the two subtasks. In the Contextual Polarity Disambiguation subtask, we use a sentiment lexicon approach combined with polarity shift detection and tree kernel based classifiers. In the Message Polarity Classification subtask, we focus on the infl...
متن کاملDomain Sentiment Matters: A Two Stage Sentiment Analyzer
There are words that change its polarity from domain to domain. For example, the word deadly is of positive polarity in the cricket domain as in “Shane Warne is a ‘deadly’ leg spinner”. However, ‘I witnessed a deadly accident’ carries negative polarity and going by the sentiment in cricket domain will be misleading. In addition to this, there exist domainspecific words, which have the same pola...
متن کاملTwo-Step Model for Sentiment Lexicon Extraction from Twitter Streams
In this study we explore a novel technique for creation of polarity lexicons from the Twitter streams in Russian and English. With this aim we make preliminary filtering of subjective tweets using general domain-independent lexicons in each language. Then the subjective tweets are used for extraction of domain-specific sentiment words. Relying on co-occurrence statistics of extracted words in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009